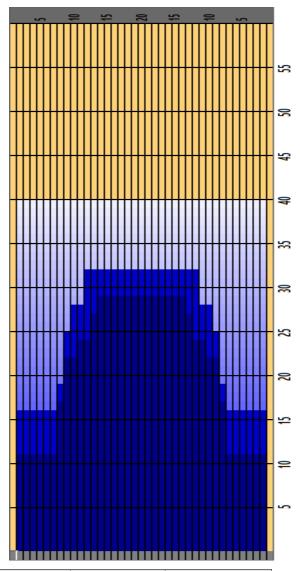


Danish Trios 2016 v2



					YOUR LANES OUR PRESION
Oil Pattern Distance	40	Reverse Brush Drop	33	Oil Per Board	Multi ul
Forward Oil Total	18.09 mL	Reverse Oil Total	8.8 mL	Volume Oil Total	26.89 mL
Tank Configuration	ALT	Tank A Conditioner	Navigate	Tank B Conditioner	Navigate

	START	STOP	LOADS	MICS	SPEED	CROSSED	START	END	FEET	T.OIL
1	2L	2R	7	45	14	259	0.0	11.9	11.9	11655
2	8L	8R	2	45	18	50	11.9	17.0	5.1	2250
3	9L	9R	2	45	18	46	17.0	22.1	5.1	2070
4	11L	11R	1	45	18	19	22.1	24.6	2.5	855
5	13L	13R	1	45	18	15	24.6	27.1	2.5	675
6	14L	14R	1	45	18	13	27.1	29.6	2.5	585
7	2L	2R	0	45	18	0	29.6	32.0	2.4	0
8	2L	2R	0	45	22	0	32.0	36.0	4.0	0
9	2L	2R	0	45	30	0	36.0	40.0	4.0	0

1 2L 2R 0 40 30 0 40.0 32.0 -8.0 0 2 12L 12R 1 40 26 17 32.0 28.4 -3.6 680 3 10L 10R 1 40 22 21 28.4 25.3 -3.1 840 4 9L 9R 2 40 22 46 25.3 19.1 -6.2 1840 5 8L 8R 1 40 22 25 19.1 16.0 -3.1 1000 6 2L 2R 3 40 18 111 16.0 8.4 -7.6 4440 7 2L 2R 0 40 18 0 8.4 0.0 -8.4 0		START	STOP	LOADS	MICS	SPEED	CROSSED	START	END	FEET	T.OIL
3 10L 10R 1 40 22 21 28.4 25.3 -3.1 840 4 9L 9R 2 40 22 46 25.3 19.1 -6.2 1840 5 8L 8R 1 40 22 25 19.1 16.0 -3.1 1000 6 2L 2R 3 40 18 111 16.0 8.4 -7.6 4440	1	2L	2R	0	40	30	0	40.0	32.0	-8.0	0
4 9L 9R 2 40 22 46 25.3 19.1 -6.2 1840 5 8L 8R 1 40 22 25 19.1 16.0 -3.1 1000 6 2L 2R 3 40 18 111 16.0 8.4 -7.6 4440	2	12L	12R	1	40	26	17	32.0	28.4	-3.6	680
5 8L 8R 1 40 22 25 19.1 16.0 -3.1 1000 6 2L 2R 3 40 18 111 16.0 8.4 -7.6 4440	3	10L	10R	1	40	22	21	28.4	25.3	-3.1	840
6 2L 2R 3 40 18 111 16.0 8.4 -7.6 4440	4	9L	9R	2	40	22	46	25.3	19.1	-6.2	1840
	5	8L	8R	1	40	22	25	19.1	16.0	-3.1	1000
7 2L 2R 0 40 18 0 8.4 0.0 -8.4 0	6	2L	2R	3	40	18	111	16.0	8.4	-7.6	4440
	7	2L	2R	0	40	18	0	8.4	0.0	-8.4	0

Cleaner Ratio Main Mix NA
Cleaner Ratio Back End Mix NA
Cleaner Ratio Back End Distance NA
Buffer RPM: 4 = 700 | 3 = 500 | 2 = 200 | 1 = 60

Item	3L-7L:18L-18R	8L-12L:18L-18R	13L-17L:18L-18R	18L-18R:17R-13R	18L-18R:12R-8R	18L-18R:7R-3R
Description	Outside Track:Middle	Middle Track:Middle	Inside Track:Middle	MIddle: Inside Track	Middle:Middle Track	Middle:Outside Track
Track Zone Ratio	2.18	1.26	1.01	1.01	1.26	2.18
1500						
1350 =						
900			···	; }		
750						
450						
150	▊▗▊▗▊▗▊▗▊▗▊		┫╌╂╌╂╌╂╌			
1 2	3 4 5 6 7 8 9	10 11 12 13 14 15	16 17 18 19 20 19	18 17 16 15 14 13 12	11 10 9 8 7 6	5 4 3 2 1